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Abstract
In this work we introduce a generalization of the Jauch and Rohrlich quantum
Stokes operators when the arrival direction from the source is unknown a priori.
We define the generalized Stokes operators as the Jordan–Schwinger map of a
triplet of harmonic oscillators with the Gell–Mann and Ne’eman matrices of the
SU(3) symmetry group. We show that the elements of the Jordan–Schwinger
map are the constants of motion of the three-dimensional isotropic harmonic
oscillator. Also, we show that the generalized Stokes operators together with
the Gell–Mann and Ne’eman matrices may be used to expand the polarization
matrix. By taking the expectation value of the Stokes operators in a three-
mode coherent state of the electromagnetic field, we obtain the corresponding
generalized classical Stokes parameters. Finally, by means of the constants
of motion of the classical 3D isotropic harmonic oscillator we describe the
geometrical properties of the polarization ellipse.

PACS numbers: 42.50.−p, 42.25.−p, 42.25.Ja, 11.30.−j, 03.65.Fd

1. Introduction

In both classical and quantum optics, Stokes parameters have proved to be intuitive and
practical tools for characterizing the polarization state of light [1–6].
4 The first author held a postdoctoral position at the Departamento de Matemáticas of CINVESTAV–IPN, Mexico,
during the preparation of this work.
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A classical or quantum electromagnetic wave propagates, generally in an arbitrary but
fixed direction in space. However, for the study of the polarization properties of the wave,
knowledge of the propagation direction of the wave allows us to choose a coordinate system
in such a way that the propagation is along the z-axis, and the polarization vector lies on
the x–y-plane (i.e. it has only two polarization components) [7]. Also, knowledge of the
propagation direction allows us to use 2D apparatus (polarizers, wave plate rotators, etc) placed
perpendicular to the wave propagation direction to measure the polarization characteristics of
the wave. The works [8–10] were done under the assumption that the arrival direction from
the source of the electromagnetic wave was known. In [8] Stokes studied the polarization
properties of a quasi-monochromatic plane wave of light in an arbitrary polarization state by
introducing four quantities, known since then as the Stokes parameters. Wiener used the 2×2
identity matrix together with the Pauli matrices as a basis to expand the coherence tensor [9].
Fano [10] showed that the Stokes parameters are the expansion coefficients of the coherence
tensor. Stokes parameters obtained under an a priori knowledge of the propagation direction
will be referred to in this work as the usual classical or quantum Stokes parameters, which are
well described in [7, 11] and [12], respectively.

When we do not know a priori the propagation direction of the wave, we no longer have
an adequate choice of coordinate system as above, and thus, in general, the three components
of the polarization vector are non-zero. In this case, the three-dimensional coherence tensor
must be used to obtain a complete polarization characterization [13, 14]. Roman [13] used
the basis of nine Hermitian 3 × 3 matrices which constitute a Kemmer algebra to define the
generalized Stokes parameters as the expansion coefficients of the correlation matrix. In [14],
Carozzi et al defined the generalized Stokes parameters as the expansion coefficients of the
spectral density tensor in terms of the SU(3) Gell–Mann and Ne’eman matrices.

In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes
operators when the arrival direction from the source is unknown a priori. For simplicity, we
study the case of a monochromatic quantized plane electromagnetic wave that propagates in a
fixed but arbitrary direction in space. Also, we will set h̄ = ω = µ = 1, where µ is the mass
of each 1D harmonic oscillator and ω is the angular frequency of either the electromagnetic
wave or each harmonic oscillator. In section 2, we define the generalized quantum Stokes
operators as the Jordan–Schwinger map of a triplet of harmonic oscillators with the Gell–Mann
and Ne’eman λi matrices of the SU(3) symmetry group. We show that the elements of the
Jordan–Schwinger map are the constants of motion of the quantum 3D isotropic harmonic
oscillator. Also, we show that the generalized Stokes operators together with the λi matrices
may be used to expand the polarization matrix. In section 3, we take the expectation value of
the generalized quantum Stokes operators in a three-mode coherent state of the electromagnetic
field to obtain the corresponding generalized classical Stokes parameters. In section 4, by
means of the classical constants of motion of the 3D isotropic harmonic oscillator we describe
the geometrical properties of the polarization ellipse. Finally, in section 5, we give some
concluding remarks.

2. Jordan–Schwinger map and the harmonic oscillator constants of motion

Usual classical Stokes parameters are defined as the expansion coefficients of the polarization
matrix [11, 15] as

J2D = 1

2

3∑
i=0

σisi (1)
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where si are the four Stokes parameters, σ0 = 12×2 and σi, i = 1, 2, 3, are the Pauli matrices.
Since the σi matrices satisfy that Tr(σiσj ) = 2δij and Tr(σ0σj ) = 0, then

Tr(J2Dσj ) = sj . (2)

2.1. Usual quantum Stokes operators

The usual Stokes operators for a quantized plane electromagnetic wave that propagates along
the z-axis are defined as [12]

S0 = a†σ0a = a
†
1a1 + a

†
2a2 S1 = a†σ1a = a

†
1a2 + a

†
2a1

S2 = a†σ2a = i
(−a

†
1a2 + a

†
2a1

)
S3 = a†σ3a = a

†
1a1 − a

†
2a2

(3)

where a
†
j and aj , j = 1, 2, are the creation and annihilation operators of the j th harmonic

oscillator defined as

a
†
j = 1√

2
(xj − ipj ) aj = 1√

2
(xj + ipj ) (4)

with
[
a1, a

†
1

] = [
a2, a

†
2

] = 1 and

a† = (
a
†
1, a

†
2

)
a =

(
a1

a2

)
. (5)

We note that equations (3) are a particular case of the Jordan–Schwinger map with two
kinematically independent bosons [16].

In the rest of this paper, the following observation is of fundamental importance: the
quantities in (3) coincide with the constants of motion of the 2D isotropic harmonic oscillator
with Hamiltonian H2D = a

†
1a1 + a

†
2a2 + 1. In fact, we can show that

[Si,H2D] = 0 i = 0, 1, 2, 3. (6)

The commutation relations of the Stokes operators are immediately obtained from the
properties of the Jordan–Schwinger map [16]. This leads us to the SU(2) Lie algebra[

S�

2
,
Sm

2

]
= iε�mn

Sn

2
�,m, n = 1, 2, 3 (7)

where ε�mn is the totally antisymmetric tensor.
We note that the angular momentum and the energy minus the zero-point energy of the

2D isotropic harmonic oscillator are equal to

Lz = S2 H2D − 1 = S0 (8)

respectively. According to Jauch and Rorhlich [12], the spin of the photon is given by S2

and it is along the direction of propagation. Therefore, the first equality in (8) means that the
angular momentum of the 2D isotropic harmonic oscillator is equal to the spin operator of the
photon.

Using equations (3), we can write the polarization matrix in terms of the constants of
motion of the 2D isotropic harmonic oscillator (usual quantum Stokes operators) as

J2D = 1

2

(〈S0〉α + 〈S3〉α 〈S1〉α + i〈S2〉α
〈S1〉α − i〈S2〉α 〈S0〉α − 〈S3〉α

)
(9)

where the 〈Si〉α, i = 0, 1, 2, 3, 4, are the classical limits of the Stokes operators, and they will
be found in section 3 by taking their expectation values in coherent or semiclassical states of
the electromagnetic field.
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The physical and geometrical implications of the equality between the Stokes operators
and the constants of motion of the 2D isotropic harmonic oscillator are extensively discussed
in [17].

2.2. Generalized Stokes operators

When the direction of arrival from the source is unknown a priori, we generalize the quantum
Stokes operators as follows. By using the Gell–Mann and Ne’eman λi matrices of the SU(3)

symmetry group [18] and the triplet of independent harmonic oscillators (three independent
bosons) a† = (

a
†
1, a

†
2, a

†
3

)
, we define the generalized quantum Stokes operators as the Jordan–

Schwinger map �i = a†λia. These are explicitly given by

�0 = a
†
1a1 + a

†
2a2 + a

†
3a3 �1 = a

†
1a2 + a

†
2a1 �2 = i

(−a
†
1a2 + a

†
2a1

)
�3 = a

†
1a1 − a

†
2a2 �4 = a

†
1a3 + a

†
3a1 �5 = i

(
a
†
3a1 − a

†
1a3

)
�6 = a

†
2a3 + a

†
3a2 �7 = i

(
a
†
3a2 − a

†
2a3

)
�8 = 1√

3

(
a
†
1a1 + a

†
2a2 − 2a

†
3a3

)
(10)

where we have used λ0 = 13×3.
From the commutation relations

[
a1, a

†
1

] = [
a2, a

†
2

] = [
a3, a

†
3

] = 1, we show that the
generalized quantum Stokes operators are the constants of motion of the 3D isotropic harmonic
oscillator with Hamiltonian H3D = a

†
1a1 + a

†
2a2 + a

†
3a3 + 3

2 , i.e.

[�i,H3D] = 0 i = 0, . . . , 8. (11)

Also, by the properties of the Jordan–Schwinger map [16], we show that the generalized
quantum Stokes operators satisfy the commutation rules of the SU(3) Lie algebra[

��

2
,
�m

2

]
= if�mn

�n

2
�,m, n = 1, . . . , 8 (12)

where the structure constants f�mn are totally antisymmetric under exchange of any two indices
and are given by

f123 = 1 f147 = 1
2 f156 = − 1

2

f246 = 1
2 f257 = 1

2 f345 = 1
2

f367 = − 1
2 f458 =

√
3

2 f678 =
√

3
2 .

(13)

A careful analysis leads us to show that the angular momentum operator L̂ = r̂ × p̂ and
the energy operator of the 3D isotropic harmonic oscillator are contained in the generalized
quantum Stokes operators. Explicitly, we can show that

L1 = �7 L2 = −�5 L3 = �2 H3D − 3
2 = �0. (14)

Because of the first three equalities in (14), the generalization of the remarks after
equations (8) means that the angular momentum of the 3D isotropic harmonic oscillator
essentially is equal to the spin operator of the photon.

We generalize the definition of the polarization matrix as follows,

J3D = 1

3
λ0〈�0〉α +

1

2

8∑
i=1

λi〈�i〉α (15)

where, again, 〈�i〉α, i = 0, . . . , 8, are the classical limits of the generalized quantum Stokes
operators. In the following section these are shown to be the expectation values of the operators
�i in a coherent state of the electromagnetic field.
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Since the λi matrices are such that Tr(λiλj ) = 2δij and Tr(λ0λi) = 0, i, j = 1, . . . , 8,
then

Tr(J3Dλj ) = 1

2
Tr

(
8∑

i=1

λiλj 〈�i〉α
)

= 〈�j 〉α. (16)

By using equations (10) and (15), the polarization matrix in terms of the 3D isotropic harmonic
oscillator constants of motion (or the generalized quantum Stokes operators) takes the form

J3D =




1
3 〈�0〉α + 1

2 〈�3〉α + 1
2
√

3
〈�8〉α 1

2 〈�1〉α − i 1
2 〈�2〉α 1

2 〈�4〉α − i 1
2 〈�5〉α

1
2 〈�1〉α + i 1

2 〈�2〉α 1
3 〈�0〉α − 1

2 〈�3〉α + 1
2
√

3
〈�8〉α 1

2 〈�6〉α − i 1
2 〈�7〉α

1
2 〈�4〉α + i 1

2 〈�5〉α 1
2 〈�6〉α + i 1

2 〈�7〉α 1
3 〈�0〉α − 1√

3
〈�8〉α


.

(17)

We observe that the λ0 coefficient in equation (15) is such that equation (17) reduces to J2D

when the propagation direction of the plane electromagnetic wave is chosen to be along the
z-axis. Also, we note that our definition of J3D is such that the trace of J2D and J3D remains
invariant.

It is important to note that the polarization matrix (15) can be defined formally for purely
quantum states. This means that it can be defined without taking the expectation values in
a semiclassical state of the electromagnetic field of the Stokes operators �i . In this way,
equation (16) becomes Tr(J3Dλj ) = �j . However, the implications of this definition are
beyond the scope of this work.

3. Generalized classical Stokes parameters

We will obtain the classical limit for the generalized quantum Stokes operators. To do this,
we proceed as in [19] to obtain the classical limit of the usual Stokes operators by taking the
expectation value of the operators (3) in a two-mode coherent state of the electromagnetic
field. In our case, we compute the mean value of the generalized quantum Stokes operators
(10) in the three-mode coherent state of the electromagnetic field

|α1, α2, α3〉 =
∞∑

n1,n2,n3=0

α
n1
1 α

n2
2 α

n3
3√

n1!n2!n3!
|n1, n2, n3〉. (18)

This leads us to the generalized classical Stokes parameters

〈�0〉α = |α01|2 + |α02|2 + |α03|2 〈�1〉α = 2|α01‖α02| cos 	21

〈�2〉α = 2|α01‖α02| sin 	21 〈�3〉α = |α01|2 − |α02|2
〈�4〉α = 2|α01‖α03| cos 	31 〈�5〉α = 2|α01‖α03| sin 	31

〈�6〉α = 2|α02‖α03| cos 	32 〈�7〉α = 2|α02‖α03| sin 	32

〈�8〉α = |α01|2 + |α02|2 − 2|α03|2

(19)

where αi = |α0i | exp(iφi), and 	ij ≡ φi − φj is the classical phase difference.
It will be shown in section 4 that equation (19) represents the Stokes parameters for three

classical oscillations of amplitudes |α0i | and phases φi . It is immediate to note that these
equalities reduce to the usual classical Stokes parameters, when the amplitude and phase of
the third oscillation vanish.
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4. Classical Stokes parameters, classical 3D isotropic harmonic oscillator constants of
motion and the geometrical properties of the polarization ellipse

The classical 3D isotropic harmonic oscillator is a particle that moves under the force

F = −r. (20)

By solving Newton’s second law and imposing the initial conditions rt=0 = xo and vt=0 = vo,
we obtain the solutions

xi = ai cos t + bi sin t i = 1, 2, 3 (21)

where ai = xoi and bi = voi . It is easy to see that these solutions satisfy the ellipsoid equation

x2
1

(
a2

2 + b2
2 + a2

3 + b2
3

)
+ x2

2

(
a2

1 + b2
1 + a2

3 + b2
3

)
+ x2

3

(
a2

2 + b2
2 + a2

1 + b2
1

)
− 2x1x2(a1a2 + b1b2) − 2x2x3(a2a3 + b2b3) − 2x1x3(a1a3 + b1b3)

= (a1b2 − a2b1)
2 + (a2b3 − a3b2)

2 + (a3b1 − a1b3)
2. (22)

This means that the orbit of the classical 3D isotropic harmonic oscillator is contained in
the ellipsoid. Moreover, since the classical 3D isotropic harmonic oscillator potential has
spherical symmetry, its orbit is restricted to be on the orthogonal plane to the classical angular
momentum Lcl = r × p. Thus, the elliptic orbit of the classical 3D isotropic harmonic
oscillator is the curve given by the intersection of the ellipsoid (22) and the plane orthogonal
to Lcl , which contains the origin of coordinates.

Equation (21) can be written in an oscillation form as

xi = |α0i | sin(t + φi) (23)

with

ai = |α0i | sin φi bi = |α0i | cos φi. (24)

These equalities imply that

α2
0i = a2

i + b2
i sin φi = ai√

a2
i + b2

i

cos φi = bi√
a2

i + b2
i

. (25)

The amplitudes and phases of the three classical oscillations of equation (23) depend on the
initial conditions ai and bi according to equations (25). Thus, if we substitute equations (25)
into equations (19), we incorporate the initial conditions in the generalized classical Stokes
parameters (constants of motion of the classical 3D isotropic harmonic oscillator). In
particular, at t = 0, the constant of motion of the angular momentum vector is

Lcl = (〈�7〉α,−〈�5〉α, 〈�2〉α) = a × b (26)

where a = (a1, a2, a3), b = (b1, b2, b3), and the ellipsoid equation (22) turns out to be

x2
1

(
4〈�0〉α − 〈�8〉α

6
− 1

2
〈�3〉α

)
+ x2

2

(
4〈�0〉α − 〈�8〉α

6
+

1

2
〈�3〉α

)

+ x2
3

(
2〈�0〉α + 〈�8〉α

3

)
− x1x2〈�1〉α − x2x3〈�6〉α − x1x3〈�4〉α

= 1

4

(〈�7〉2
α + 〈�5〉2

α + 〈�2〉2
α

)
. (27)

Following the definition of the Euler angles in [20], we perform a rotation such that the
direction of the new x1-axis coincides with that of the line of nodes, and the direction of
the new x3-axis coincides with that of Lcl . The direction of the line of nodes (direction of
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the intersection line between the orbit and the x1–x2-plane) is found by a unitary vector in the
x1–x2-plane, perpendicular to Lcl = (〈�7〉α,−〈�5〉α, 〈�2〉α). This leads us to

sin φ = nx = ± 〈�7〉α√〈�7〉2
α + 〈�5〉2

α
(28)

cos φ = ny = ∓ 〈�5〉α√〈�7〉2
α + 〈�5〉2

α

.

The orthogonality between Lcl and the ellipse plane leads to

cos θ = 〈�2〉α√(〈�7〉2
α + 〈�5〉2

α + 〈�2〉2
α

) . (29)

On the other hand, it is well known that the constants of motion of the classical 3D isotropic
harmonic oscillator, in addition to the energy and the angular momentum are given by the
symmetric Runge–type tensor [21]

Aij = 1
2 (pipj + ω2xixj ) i, j = 1, 2, 3. (30)

It can be shown that the contraction of this equation with the components of Lcl yields zero.
This means that all the geometrical characteristics of the orbit must be determined by Aij . In
fact, we can show that

2A11 = 2〈�0〉α + 〈�8〉α
6

+
〈�3〉α

2
2A22 = 2〈�0〉α + 〈�8〉α

6
− 〈�3〉α

2

2A33 = 〈�0〉α − 〈�8〉α
3

2A12 = 1

2
〈�1〉α

2A13 = 1

2
〈�4〉α 2A23 = 1

2
〈�6〉α.

(31)

This shows that the geometrical properties of the polarization ellipse exclusively depend on the
generalized classical Stokes parameters. It can be shown that the eigenvalues of Aij depend
only on the energy and the magnitude of the angular momentum of the classical 3D isotropic
harmonic oscillator [21]. The tensor Aij has an eigenvector in the direction of the angular
momentum, and its other two eigenvectors are in the directions of the principal axis of the
elliptical orbit [21]. Also, the eigenvectors of a symmetric rank-two tensor are determined by
its eigenvalues as well as its components [22]. The above remarks lead us to conclude that the
principal axis directions of the elliptical orbit are completely determined by the generalized
classical Stokes parameters. Also, since Lcl is orthogonal to the polarization ellipse, then Lcl

points along the propagation direction of the electromagnetic wave.

5. Concluding remarks

This work links quantum optics to classical optics by means of quantum mechanics and it is a
useful extension of the generalized classical Stokes parameters into the quantum domain.

Although there are already treatments of the classical Stokes parameters in the case of an
a priori unknown direction of the electromagnetic wave propagation [13, 14], our treatment
results to be novel in the following aspects. We have introduced a generalization of the quantum
Stokes parameters of Jauch et al [12] using the Jordan–Schwinger map, three independent
bosons and the Gell–Mann and Ne’eman SU(3) symmetry group matrices. It was shown
that the generalized quantum Stokes operators turn out to be the expansion coefficients of the
polarization matrix in terms of the Gell–Mann and Ne’eman SU(3) matrices.
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The semiclassical limit of the generalized Stokes operators was achieved by taking their
expectation values in a three-mode coherent state of the electromagnetic field. Thus, our
treatment in the quantum domain is more general than those given in [13, 14], which are
restricted to the classical aspects of electromagnetic polarization.

We described by means of the classical 3D isotropic harmonic oscillator constants of
motion, the geometrical properties of the polarization ellipse. Particularly, we showed that
the ellipsoid coefficients and the symmetric Runge-type tensor of the classical 3D isotropic
harmonic oscillator are completely determined by the generalized classical Stokes parameters.
Also, we showed that the first two Euler angles are intimately related to the components of the
orbital angular momentum of the classical 3D isotropic harmonic oscillator.

Finally, we emphasize that our generalization provides six independent generalized
classical Stokes parameters. This is because going from (22) to (27), all of them were written
in terms of the six parameters, ai and bi, i = 1, 2, 3 which contain the initial conditions of the
classical 3D isotropic harmonic oscillator.
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